
DESIGN OF AN AUGMENTED REALITY PROCESSING 

ALGORTIHM FOR BALL DETECTION 

 

Kwame Martin 

B.S. Computer Science „11  

Norfolk State University 

 

 

Mentor: Chad Jenkins, Ph.D 

Robotics, Learning and Autonomy Lab 

Department of Computer Science 

Brown University, RI 

 

 

Providence, RI 2010 

 

 

 

Table of Contents: 

1. Introduction 

2. ROS 

3. AR ToolKit & AR_RECOG  

4. Augmented Reality Processing 

4.1 Using Augmented Reality Recognition to see AR tags attached to ball  

4.2 Getting iCreate Robot to seek out AR tags i.e. Ball Detection 

5. Conclusion & Future Work 

6. References 

 



1. INTRODUCTION 

The aim of this research project was to design an algorithm for ball recognition which will be 

used in a bigger project – i.e. an outdoor soccer game using the iRobot Create, an Aus Eee PC 

and a camera. My paper focuses on both the locomotive and computer vision methods that were 

taken into account while achieving this aim. The main approach deals with Augmented Reality 

Tag Recognition. The paper contains my attempt and the extent to which the ultimate goal has 

been accomplished. 

The programming language of choice in this project was C++ for the following reasons – it is 

one of the languages supported by ROS (including Python); and it is currently the programming 

language with which I feel most comfortable with.  

 

 

 

2. ROS 

ROS (Robot Operating System) is an open-source, meta-operating system for your robot. It provides 
the services you would expect from an operating system, including hardware abstraction, low -level 

device control, implementation of commonly-used functionality, message-passing between 

processes, and package management. [1]  

 

This is the main platform upon which all our experiments are run. It is installed on the Asus PC 

which is then connected to the iRobot Create and camera. It contains libraries for handling streaming 

camera images and also for communicating with the Create‟s  motors and sensors.  
 

In ROS, programs are called nodes. For one node to make certain data available to other nodes, it 

publishes such data to a topic. A node that needs such data then subscribes to the desired topic. 

When many nodes need to run at the same time, one can utilize roslaunch. By creating a launch 

file that contains all the nodes, all the process can start at the same time.  

 

 

 

 

 

 



3. AR ToolKit & AR_RECOG  

AR_RECOG processes ROS image-transports with ARToolkit.  

ARToolKit is a C and C++ language software library that lets programmers easily develop 

Augmented Reality applications. Augmented Reality (AR) is the overlay of virtual computer 
graphics images on the real world, and has many potential applications in industrial and 

academic research. [2] 

One of the most difficult parts of developing an Augmented Reality application is precisely 
calculating the user's viewpoint in real time so that the virtual images are exactly aligned with 

real world objects. ARToolKit uses computer vision techniques to calculate the real camera 
position and orientation relative to marked cards, allowing the programmer to overlay virtual 
objects onto these cards. The fast, precise tracking provided by ARToolKit played a major role 

in our project. [2] 

 

 

4. AUGMENTED REALITY PROCESSING 

 

4.1 Using Augmented Reality Recognition to see AR tags attached to ball  

ARToolKit applications allow virtual imagery to be superimposed over live video of the real 
world. Although this appears magical it is not. The secret is in the black squares used as tracking 
markers. The ARToolKit tracking works as follows:  

1. The camera captures video of the real world and sends it to the computer.  
2. Software on the computer searches through each video frame for any square shapes.  
3. If a square is found, the software uses some mathematics to calculate the position of the 

camera relative to the black square.  
4. Once the position of the camera is known a computer graphics model is drawn from that 

same position. 

5. This model is drawn on top of the video of the real world and so appears stuck on the 
square marker. 

6. The final output is shown back in the handheld display, so when the user looks through 
the display they see graphics overlaid on the real world. [2] 

Fig. 1 below summarizes these steps. ARToolKit is able to perform this camera tracking in real 
time, ensuring that the virtual objects always appear overlaid on the tracking markers. This AR 

Tag was mounted onto the ball.  



 

 Fig. 1: How ARToolKit works. 

The Asus Eee PC‟s webcam used to recognize the AR tags in the experiment, had to be 
calibrated specifically due to resolution correction issues. The code below helped resolve those 

issues perfectly: 

export GSCAM_CONFIG="v4l2src device=/dev/video0 ! video/x-raw-

rgb,width=320,height=240 ! ffmpegcolorspace ! identity name=ros ! fakesink" 

The camera was not initially calibrated to recognize and determine the distance of the AR tag, so 

I had to follow the “Calibrating Distance” instructions found on the ROS wiki. The instructions 
were as follows: 

 Set up a clear, recognized AR tag at a known distance from the camera.  
 Start the ar_recog node and monitor the /tags message  

 Arrange the AR tag and camera so that the tag coordinates are as close as possible to the 
center of the image, and the xRot, yRot and zRot are as close as possible to zero. This 

will minimize distortion.  
 Call the ar_recog/CalibrateDistance service, where dist is the distance between the AR 

tag and the camera in millimeters:  

“ rosservice call ar/calibrate_distance dist” 

 The more accurately the distance is known, the better ar_recog is able to undistort the 
image. Thus you may have to repeat the service call a few times until the reported 
distance converges on the value you are providing.  

 Save this aov value to provide as a ROS parameter next time you use ar_recog with this 
camera. [1] 

 



 

Fig. 2: Image to the left shows the view of the Asus Eee PC‟s webcam. Here you can see the 

green outline showing ar_recog finding the AR tag via corner finding. The image to the right 

shows the AR tag information once it has been recognized giving specific tag information and 

details. 

 

4.2 Getting iCreate Robot to seek out AR tags i.e. Ball Detection 

The main goal initially was to have the AR tag attached to the soccer ball and have the iRobot 

use the AR tag to seek out & tackle the/kick the ball but I found difficulty in devising a means of 

doing this without the AR tag toppling over and the webcam losing sight of the tag. So instead, I 

simply attached the AR tag to a box to display the iRobot functionality with the AR tag 

recognition as though the box was a ball, the box substitute, being a little better in this case, it 

being less likely to topple over.  

With that said my next goal was to have the iRobot Create with the Asus Eee PC and its webcam 

mounted on top of it to seek out the AR tagged box and inevitably hit or “kick” the ball, i.e. the 

box with the AR tag attached to it.  



Already in the works for AR Tag Detection and Following at the Brown ROS lab was an 

algorithm called Nolan.py, located in the Brown ROS Package‟s Experimental folder. The 

algorithm that I used to seek out and follow the ball was basically the Nolany.py algorithm with 

some of my own modifications made to it. The Nolan.py algorithm utilizes ar_recog and its tag 

recognition services and message publishing to locate an identified AR tag within its range of 

sight and angle of view, while moving towards it and simultaneously keeping track of the AR 

tags corners through the use of its corner finding algorithm. In this manner the iRobot Create 

with the Asus Eee PC and its webcam mounted on top of it appears to follow the AR tag around.  

My modifications basically incorporated the manipulation of the ar/image and ar/tag‟s Y-Metric 

value to set up an algorithm that now has the iRobot Create: 

i. Rotate, till the Asus Eee PC‟s webcam identifies an AR tag 

ii. Stop and face the found AR tag  

iii. Move toward the found AR tag, and then 

iv. Increase its forward motion velocity within the closest range of the AR tag, mimicking a 

soccer “kicking” motion and hitting the box with the AR tag attached to it.  

 

 

 

 

5. CONCLUSION & FUTURE WORK 

In conclusion, the experiment shows that through the use of Augmented Reality Processing 

Algorithm, one can effectively detect the presence of an object (ball, box etc.) and maneuver 

around and interact with it, given that it has been properly calibrated and tagged with an AR tag. 

In future, a camera with a higher resolution better designed for sight and object recognition could 

be used in the location of the AR tag.  

Also, through the process of this research, it has been observed that ball recognition will require 

more than Augmented Reality Processing. Future research work will include more detailed 

techniques such as Image Processing, HOG (Histogram of Oriented Gradients) and Sift (Scale-

Invariant Feature Transform).  

I would like to thank the Computer Research Association for this research opportunity and 

Brown University‟s RLAB (Robotics, Learning & Autonomy at Brown) for giving me the 

opportunity to perform research at their lab. Through this granted experience, I have gained 

much new knowledge in a very interesting field of Computer Science. The skills I have obtained 

in ROS will be relevant to my future career in the business world of Computer Science.  



6. REFERENCES 

 [1] “ROS Wiki” http://www.ros.org/wiki 

 

 [2] Sinclair, Patrick. "ARToolKit Documentation." Web. 17 Oct. 2010.   

<http://www.hitl.washington.edu/artoolkit/documentation/>.  

[3] "Augmented Reality." Wikipedia, the Free Encyclopedia. Web. 17 Oct. 2010. 

<http://en.wikipedia.org/wiki/Augmented_reality>.  

[4] "IRobot Create." Wikipedia, the Free Encyclopedia. Web. 17 Oct. 2010. 

<http://en.wikipedia.org/wiki/IRobot_Create>.  

 

http://www.ros.org/wiki

